Friday, 29 July 2022

Attempted adventures in dinosaur facial restoration, starring Giganotosaurus

Giganotosaurus carolinii carries the remains of a juvenile rebacchisaurid while sporting a bunch of crazy tissues on its face. Big scales, horns, and is that some kind of thick pad over its snout? Is all this artistic speculation or something inferred from fossils? Read on...

Up until now, my palaeoart career has not crossed paths with carcharodontosaurids, the gigantic, charismatic and famous allosauroids best known for Acrocanthosaurus, Giganotosaurus, Carcharodontosaurus and, most recently, Meraxes. This month, however, I finally had cause to restore Giganotosaurus carolinii, the largest of the group and, potentially, the largest of all theropods.

Carcharodontosaurids are, at first glance, not too challenging to restore: take an Allosaurus, turn everything up to 11 and job done, right? Well, maybe not. Not only are the proportions of carcharodontosaurids (and, to be fair, carcharodontosaurians in general) subtly different from their allosauroid ancestors, but their jaws and eye regions are characterised by a suite of complex sculpting and rugosities. It’s thought that these are epidermal correlates (Sereno and Brusatte 2008): distinctive bone surfaces and histological patterns that record different skin types interacting with the underlying bone (Hieronymus et al. 2009). I’ve written quite a lot about epidermal correlates at this blog because they provide heaps of important external soft-tissue information without direct soft-tissue fossilisation and learning to spot them, in my view, is an essential skill for any budding palaeoartist.

The presence of epidermal correlates on carcharodontosaurid skulls means that we can’t take an “anything goes” approach to restoring Giganotosaurus or its close relatives; instead, there probably is a “right”, or at least "more defensible", way to approach depictions of their faces. Alas, to my knowledge, no specific investigation has been conducted into what carcharodontosaurid skull textures represent despite our interest in other dinosaur epidermal correlates (e.g. Hieronymus et al. 2009; Carr et al. 2017; Delcourt 2018). This means there’s not yet a “go-to” study to provide artists with answers for restoring these animals and anyone wanting to illustrate Giganotosaurus credibly has to make their own interpretations from descriptions and illustrations in scientific literature. Having just been through this process myself, and realising that Giganotosaurus is a fan-favourite, I thought it might be of interest to share my thoughts here. I want to be upfront by declaring that the following deductions are little more than best guesses; without having direct experience of Giganotosaurus fossils I can’t write anything definitive about what Giganotosaurus looked like. Think of the following more as a discussion piece than a rigorous guide, and I welcome input and insight from others if I’ve made errors.

As I understand it, most of what's been illustrated of Giganotosaurus is shown above in this compilation of figures from Coria and Salgado (1995; greyscale graphics) and Novas et al. (2013; colour). Not as much as you might expect, right? There's a lot more known of this species that hasn't been published yet, some of which contain crucial information for palaeoartists (and I guess for scientists too).

And it’s in this spirit that, right off the bat, we need to mention that researching Giganotosaurus is pretty challenging. Its fossils are thinly documented despite Giganotosaurus being one of the more completely known carcharodontosaurids and, even today, almost 30 years since it was announced to the world, we only have a fraction more information available to us than when it was first named in 1995. Just a handful of its bones have been figured so good photos or illustrations of several fossils relevant to this conversation have not been published (Coria and Salgado 1995; Coria & Currie 2002; Novas et al. 2013). Thus, anyone trying to restore this animal from scientific papers alone will struggle for information and a lot of secondary sources — online photographs of fossils and casts, skeletal reconstructions and museum mounts etc. — are essential to obtaining basic information about its proportions and size, even if they risk introducing reconstruction errors. Closely related taxa and comparative descriptions (i.e. “Mapusaurus has a more rugose snout than Giganotosaurus”) are critical too, providing crucial details not mentioned in dedicated Giganotosaurus papers. I mention this because it means that, from the get-go, we’re not in an ideal research scenario for a palaeoartwork, and this makes the possibility of errors in interpretation all the greater.

With appropriate caveats established, let’s dive into this discussion. As with most theropods that have rugose, textured faces, our attention here is going to be on the bones of the snout and orbital region, as these are the principal areas to bear features that might signify epidermal tissues. The carcharodontosaurid fossil record contains a large number of maxilla bones (the main tooth-bearing bone of the upper jaw) and this is good news for artists, as the lateral surfaces of these potentially tell us a lot about the skin on the side of the upper jaw. The typical maxillary rugosity for carcharodontosaurids is well documented across several species, especially Carcharodontosaurus saharicus, Eocarcharia, Mapusaurus and Meraxes. It comprises a series of sub-vertical grooves and pits (Stromer 1936; Sereno et al. 1996; Coria and Currie 2006; Brusatte and Sereno 2007; Sereno and Brusatte 2008; Canale et al. 2022) and some species (e.g. C. saharicus, Eocarcharia, Mapusaurus) supplement these with prominent ridges extending along the base of the antorbital region. These bars separate the rugose maxillary body from the smoother bone of the antorbital fossa: that slightly impressed region of bone surrounding the antorbital fenestra.

The maxilla of Eocarcharia dinops, as illustrated by Brusatte and Sereno (2008), shows the texturing typical of carcharodontosaurid snouts. Note the ridge dividing the textured region from the smoother antorbital fossa: this feature isn't seen in all carcharodontosaurids but might tell us something about skin types all the same. The fossa region is particularly big in this species.

The texturing characterising carcharodontosaurid maxillae may be somewhat less pronounced in Giganotosaurus and thus, perhaps like Acrocanthosaurus, its maxillae may have been on the smoother end of the rugosity scale (Coria and Currie 2006; Eddy and Clarke 2011; Novas et al. 2013). All else being equal, this might imply differences in facial anatomy within Carcharodontosauridae: whatever those grooves and pits signify may not have been as exaggerated in some species as others. A caveat here is that, as is often the case with skin-altered bones, larger carcharodontosaurid individuals tend to have more exaggerated rugosity profiles than smaller ones (Coria and Currie 2006; Canale et al. 2014), suggesting a link with body size or age as well as differences between species. We probably want a number of maxillae from a range of differently aged individuals to establish whether a species has consistently smoother jawbones than its relatives.

Comparing these maxillary features with existing interpretations of dinosaur epidermal correlates provides potential insights into their significance. The textures in question are often likened to those adorning the lateral surfaces of abelisaur skulls and, if so, we might follow Delcourt (2018) in inferring that they represent scale correlates. This seems sensible to me, certainly more than other possible jaw coverings. Carcharodontosaurid maxillae lack the projecting rugosities consistent with armoured dermis or the branching neurovascular channels and oblique foramina found under beak or horn tissues (Hieronymus et al. 2009). Furthermore, the ridges bordering the antorbital regions in some carcharodontosaurids are inconsistent with beaks: cornified sheath tissues tend to terminate with obvious steps downwards into smoother neighbouring bone, not upwards to ridges of rugose bone (Hieronymus et al. 2009).

The skull of a common snapping turtle Chelydra serpentina. The more rugose parts of this skull correspond to regions covered in large scales, while the slightly finer rugosity around the jaws demark the distribution of the beak (also note the stepped topography at the beak/scale transition). Prominent ridges occur around the eyes and nose where large scales meet softer tissues: perhaps this is analogous to what we're seeing in those ridged carcharodontosaurid maxillae?

Raised bony ridges are seen, however, around the skull openings of reptiles with tough, tightly-adhering facial skin like crocodylians and certain turtles, marking some boundaries between thick, relatively immobile skin and softer, more flexible regions. We might expect the antorbital skin of theropods to flex slightly during breathing, as it does in birds, and I wonder if we're picking up some evidence of that in carcharodontosaurids? The notion that carcharodontosaurid maxillary skin might be tough and immobile is not without precedent, as early members of the broader Carcharodontosauria clade are thought to have had maxillary skin of this nature (Barker et al. 2019). If there really was a distinction in skin flexibility in the snouts of these animals it may have been obvious in life, as it is in crocodylians and turtles (I realise this sounds like advocating some form of shrinkwrapping — lightning flashes in the distance, thunder rumbles — but we can't overlook the fact that osteological features do, sometimes, correlate with skin types in living animals). I took these reptiles as inspiration in my reconstruction, giving Giganotosaurus a series of large, thick scales over the side of its upper jaw that terminate sharply around the antorbital region. I retained a full set of lips for reasons that have been thrashed out too many times to bear repeating here, except to mention that — like those of tyrannosaurs — carcharodontosaurid maxillae seem to constrain their rugosity to regions above the toothrow, suggesting whatever skin anchored above the labial foramina (the row of perforations along the jaw) was not so tightly anchored next to the teeth.

Immediately above the maxillae are another set of sculpted bones: the nasals and lacrimals. Collectively, these bones form the various fins and crests that line the top of the snouts in many allosauroids (see Chure and Loewen 2020 for a great visual of these), but the carcharodontosaurid condition is not typical of this wider clade. Nasal material is known for Giganotosaurus but it was not featured in its original description, nor (to my knowledge) has it been illustrated elsewhere. What’s hinted at in various reconstructions and papers is that Giganotosaurus joins Mapusaurus, Meraxes and Carcharodontosaurus in having especially sculpted nasal bones over the maxillary region, specifically bearing deep, generally parallel-sided grooves crossing transversely over the dorsal surface and vertically on the lateral face (Coria and Currie 2006).

The right nasal of Mapusaurus rosae, one of the better-illustrated examples of the crazy rugosities developed on these bones by some carcharodontosaurids. A shows the lateral view, B is dorsal, from Coria and Currie (2006).

These bones cannot be described as forming narrow crests as they can for Allosaurus and kin because their texturing meets in the middle of the skull and they are not pinched into long, narrow fins (Sereno et al. 1996; Coria and Currie 2006). Accordingly, some common artistic interpretations of these structures as supporting crests or a series of hornets over carcharodontosaurid faces (which I first assumed when embarking on this painting project, I think incorrectly: see below) may be erroneous: whatever skin made these features extended over the entire dorsal surface of the nasals as well as across the upper lateral region of the snout. Exactly what’s happening here is unusual among theropods, but the rugosity depth almost certainly implies some extensive cornificiation. I'll go further to say that, to the best of my knowledge, deep, subparallel grooves are uniquely associated with cornified pads growing at shallow angles to the underlying bone (Hieronymus et al. 2009). If correct, might we infer that heavy, thick bars of densely keratinised tissue adorned the top of carcharodontosaurid skulls? Cornified pads are predicted in this region elsewhere within Theropoda (e.g. within abelisaurids: Delcourt 2018) so such a suggestion isn’t entirely without precedent, but I'm not sure we've viewed carcharodontosaurids with such heavy ornament before. It would be great to see some actual research on this to investigate what’s really going on with these bones. Giganotosaurus striding around with fat cornified pads atop its face would be all sorts of awesome, especially given that we already think other regions of carcharodontosaurid faces might be adapted for headbutting (e.g. Sereno and Brusatte 2008; Cau et al. 2013).

An earlier version of my Giganotosaurus reconstruction with individual hornlets above the snout: thinking again on this topic, I probably got this wrong as the nasal texturing isn't consistent with the bones that underly hornlets in living species. I've already sent myself to bed without dinner as punishment.

The corrugated nasals are bordered posteriorly by further rugosities around the orbit. This is actually one of the better-known parts of the Giganotosaurus skull and it has been illustrated (Coria and Salgado 1995) so we can be pretty confident about what this region generally looked like, even if a lack of a comprehensive description means it’s difficult to know exactly what sort of rugosities it bears. In terms of basic structure, a rounded, horn-shaped process sits atop the lacrimal (the bone in front of the orbit) and a prominent boss projects above and somewhat laterally from the postorbital (the bone behind the eye). As seems typical for carcharodontosaurids and, indeed, for carcharodontosaurians in general, the latter slopes back and downward somewhat such that Giganotosaurus and kin probably looked perpetually worried, their postorbital bosses creating the appearance of a furrowed brow. 

From what I can gather, the ultra-rugosity of the nasal bones doesn’t extend fully over the eyes in Giganotosaurus or its relatives. I suspect, based on what we see in better-illustrated carcharodontosaurids, that this reflects adornment of the lacrimal process with a cornified sheath rather than a pad. This creates the potential for a sharper horn than implied by the underlying bone shape, although it just as easily could be an exaggeration of the relatively blunt underlying bone structure. As is widely known in palaeoart circles, it can be difficult to predict the exact shapes cornified sheaths will take, even in modern species (Angst et al. 2020).

The postorbital boss variation of carcharodontosaurids, as illustrated by Sereno and Brusatte (2008): A shows the simpler morphology of Eocarcharia dinops; B shows Carcharodontosaurus saharicus.

Similar textures seem to have extended continuously onto the postorbital boss in derived carcharodontosaurids, such that we might imagine a continuation of the sheathed skin of the lacrimal onto this region (Coria and Currie 2006; Sereno and Brusatte 2008; Canale et al. 2022). There is, however, some variation of boss morphology within the clade in that some species have relatively smooth, rounded bosses (e.g. Sereno and Brusatte 2008; Cau et al. 2012): this is another area where more information specifically on Giganotosaurus would be welcome. For those species lacking pronounced texturing, I wonder if we’re dealing with big scale correlates rather than a surface covered with thick, densely keratinised tissue? These skin types may not be mutually exclusive however, as there is precedent for scale correlates showing signs of cornification in some dinosaurs (Hieronymus et al. 2009). A scaly postorbital boss in a young animal could well develop into a more cornified, horny structure in an adult. Again, more specimens of different growth stages might be needed here to be certain of true differences between species.

The result of all this noodling: Giganotosaurus looking a little more knobbly than usual, and also a bit world-weary thanks to that postorbital boss. Maybe the pressure of the "who's the biggest theropod" competition is pretty intense for these guys.

Putting all this together resulted in the image of Giganotosaurus that accompanies this post. Thanks especially to the big cornified pad bridging the middle of the skull, this is a face that looks more heavy-duty than we’re used to and maybe less generically “allosaurian”. But unfamiliar as it is, I’m happy with this outcome because following evidence to unexpected results is one of the great joys of palaeoart, and I always enjoy rationalising an unusual reconstruction from a foundation in science rather than mere speculation. But, again, I want to stress that this is just my interpretation of information gleaned from a less-than-ideal representation of Giganotosaurus in technical literature. This means I may have made errors obvious to those more experienced with these fossils and, moreover, when the structures discussed here are finally studied for their soft-tissue significance, the outcomes may be very different.

Enjoyed this post? Support this blog for $1 a month and get free stuff!

This blog is sponsored through Patreon, the site where you can help artists and authors make a living. If you enjoy my content, please consider donating as little as $1 a month to help fund my work and, in return, you'll get access to my exclusive Patreon content: regular updates on upcoming books, papers, paintings and exhibitions. Plus, you get free stuff - prints, high-quality images for printing, books, competitions - as my way of thanking you for your support. As always, huge thanks to everyone who already sponsors my work!


  • Barker, C. T., Naish, D., Newham, E., Katsamenis, O. L., & Dyke, G. (2017). Complex neuroanatomy in the rostrum of the Isle of Wight theropod Neovenator salerii. Scientific Reports, 7(1), 1-8.
  • Brusatte, S. L., & Sereno, P. C. (2007). A new species of Carcharodontosaurus (Dinosauria: Theropoda) from the Cenomanian of Niger and a revision of the genus. Journal of Vertebrate Paleontology, 27(4), 902-916.
  • Calvo, J. O.and Coria, R. (1998). New specimen of Giganotosaurus carolinii (Coria & Salgado, 1995), supports it as the largest theropod ever found. Gaia, 15, 117-122.
  • Canale, J. I., Apesteguía, S., Gallina, P. A., Mitchell, J., Smith, N. D., Cullen, T. M., ... & Makovicky, P. J. (2022). New giant carnivorous dinosaur reveals convergent evolutionary trends in theropod arm reduction. Current Biology.
  • Carr, T. D., Varricchio, D. J., Sedlmayr, J. C., Roberts, E. M., & Moore, J. R. (2017). A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Scientific Reports, 7(1), 1-11.
  • Cau, A., Dalla Vecchia, F. M., & Fabbri, M. (2012). Evidence of a new carcharodontosaurid from the Upper Cretaceous of Morocco. Acta Palaeontologica Polonica, 57(3), 661-665.
  • Coria, R. A., & Currie, P. J. (2003). The braincase of Giganotosaurus carolinii (Dinosauria: Theropoda) from the upper cretaceous of Argentina. Journal of Vertebrate Paleontology, 22(4), 802-811.
  • Chure, D. J., & Loewen, M. A. (2020). Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America. PeerJ, 8, e7803.
  • Coria, R. A., & Currie, P. J. (2006). A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas, 28(1), 71-118.
  • Coria, R. A., & Salgado, L. (1995). A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature, 377(6546), 224-226.
  • Delcourt, R. (2018). Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers. Scientific reports, 8(1), 1-12.
  • Eddy, D. R., & Clarke, J. A. (2011). New information on the cranial anatomy of Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). PloS one, 6(3), e17932.
  • Hieronymus, T. L., Witmer, L. M., Tanke, D. H., & Currie, P. J. (2009). The facial integument of centrosaurine ceratopsids: morphological and histological correlates of novel skin structures. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology, 292(9), 1370-1396.
  • Novas, F. E., Agnolín, F. L., Ezcurra, M. D., Porfiri, J., & Canale, J. I. (2013). Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretaceous Research, 45, 174-215.
  • Sereno, P. C., & Brusatte, S. L. (2008). Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica, 53(1), 15-46.
  • Sereno, P. C., Dutheil, D. B., Iarochene, M., Larsson, H. C., Lyon, G. H., Magwene, P. M., ... & Wilson, J. A. (1996). Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science, 272(5264), 986-991.
  • Stromer, E. (1936). Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. VII. Baharije-Kessel und -Stufe mit deren Fauna und Flora. Eine ergänzende Zusammenfassung. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung n. f., 33:1–102.

Wednesday, 29 June 2022

Can dinosaur movies have too many dinosaurs?

Yes, against my better judgement, we're going there.
(Publicity image for Jurassic World: Fallen Kingdom. This image is too populous online to find its original source, so let's just assume it's the PR department at Universal/Legendary Pictures.)

So, that’s that. With the release of Jurassic World: Dominion the so-called “Jurassic Era” — which is what certain posters now want us to call the six loosely connected films in the Jurassic Park series — is over. Whether it's actually concluded will surely be determined by box office revenues more than creative necessity but, whatever: for the time being, the Jurassic Park movie series is officially finished.

However we feel about the Jurassic films, we have to acknowledge two facts about them. First, they represent a uniquely successful stream of palaeontology-inspired products. I can’t think of another string of dinosaur movies that have all had theatrical releases, nor has anything dinosaur-related ever generated so many billions of dollars. Once enough time has passed to fully gauge their impact, I’m sure palaeontological historians will give the Jurassic films serious study as a cultural phenomenon that shaped decades of conversations about prehistoric life. Whether we like it or not, 21st Century dinosaur outreach takes place in a big, Jurassic Park-shaped footprint stamped into pop culture.

Second, it’s not controversial to say that the Jurassic series has been critically divisive. Only the 1993 original is regarded as a classic and is widely, deservedly considered to rank alongside Spielberg’s best crowd-pleasers like Jaws and Raiders of the Lost Ark. The Jurassic sequels, on the other hand, have made a lot of money, but fans and critics often clash about which, if any, rank above mediocre. 2015’s Jurassic World is generally regarded as the best sequel, perhaps aided by borrowing much of its plot structure from the original film, but even this has not escaped accusation of thin, contrived plotting and flat, boring characters. This is to say nothing of the series’ slide away from palaeontological science towards increasingly inaccurate, toyetic creature designs.

Moreover, and echoing broader trends in blockbuster cinema, the Jurassic films have also become increasingly action-orientated. This means, relative to the original, they feature many more dinosaur sequences. The new trilogy in particular is stuffed with as many dinosaurs as each film can bear. Box office receipts show that this elevated level of prehistoric mayhem has paid off, as least among general audiences and we can't truly blame the Jurassic filmmakers for adding more dinosaurs: they are, after all, making dinosaur movies. Aren't they just giving us what we want and expect? Maybe, but I suspect this is actually the fault line along which these films divide opinion. If you're the sort of person who punches the air every time a Jurassic film includes a new species, no matter how fleetingly and inconsequentially, you've probably enjoyed the last three films. If, however, you tire quickly of what can be repetitive dinosaur sequences and want a little more in terms of story and characterisation from your Jurassic experience, you're more likely to view this dino-centricity as mindless, dull prehistoric noise.

This raises the question of whether dinosaur films can, perhaps against expectation, go too far with their main draw: can they a dinosaur film actually have too many dinosaurs? The answer, of course, is a matter of opinion, but one way we might try to answer it objectively lies in revisiting the only Jurassic film we all agree is genuinely good: the original Jurassic Park. Were these filmmakers all in on dinosaurs, adding as many as their budget and technology would allow, or is the famously low dinosaur screen time of Jurassic Park a creative decision?

Now eventually you plan to have dinosaurs in your dinosaur film, right? Hello? Hello? Yes?

The story behind the script for the first Jurassic film is recounted in Shay and Duncan’s 1993 book The Making of Jurassic Park, and much of the following is taken from that source. The script took a long time to come together, going through several rewrites by different people. Original book author Michael Crichton was contracted to take the first stab at the film's screenplay but admitted that his heart was never in it. Crichton had literally just finished the novel and simply wasn’t interested in adapting the story so quickly after putting his own version to bed. A second treatment was penned by Malia Scotch Marmo, who’d just written Spielberg’s 1991 Peter Pan adventure Hook. Her version is notable for blending the character of Ian Malcolm with that of Alan Grant to give the latter more personality, as the weakly fleshed-out characters of Crichton’s novels were regarded as a problem that needed solving for the film.

Photograph of the essentially completed, but never used baby Triceratops built for Jurassic Park. The scene with this animatronic ended up being abandoned for creative reasons, despite the money invested in bringing it to completion. Fans would briefly see this guy in action during a very quick cameo in The Lost World, however. Image from Mike Tharme's Twitter feed.

But Marmo’s interpretation wasn’t well received either and, relatively close to the start of filming, another writer was hired for a third stab at cracking the story. Enter David Koepp, who you’re surely familiar with from some of the biggest blockbusters of the 1990s and 2000s: Jurassic Park and its first sequel, 1996’s Mission: Impossible, Sam Raimi’s Spider-Man, the 2005 War of the Worlds and… er… Indiana Jones and the Kingdom of the Crystal Skull (hey, I didn’t say they were necessarily good blockbusters). Koepp proved to be the person who could finally tap the full potential of Crichton’s novel, perhaps because he and Spielberg agreed on a major problem with their source material: it had too many dinosaurs. Lest it be thought I’m generalising or paraphrasing, this is exactly how Spielberg described adapting the novel.

“Believe it or not… the first thing I thought was that the book had too many dinosaurs in it. I didn’t think it was physically possible to make a movie that chock-full of dinosaurs… What I wanted to do was boil the book down and choose my seven or eight favourite scenes and base the script around those. So we crunched the book.”

Steven Spielberg, quoted in Shay and Duncan (1993, p. 12)

Given that the first Jurassic Park was pioneering so many new special effects, we might assume that Spielberg’s reservations reflect limitations of technology and budget. But while these were surely limiting factors, they were not the only considerations when it came to losing dinosaur sequences. In fact, we know expensive effects were scrapped after script changes in at least one instance, when a year’s worth of development and production on an animatronic baby Triceratops was abandoned late in pre-production. This effect was intended for a whimsical scene where Lex Murphy would ride around on it, further demonstrating the "dinosaurs were not monsters" ethos etched into the writing and production philosophy of Jurassic Park. But Koepp found the scene interrupted the flow and tone of the film wherever he placed it in the script. As he explained:

“If we put the [Triceratops] ride before the T. rex attack, it slowed down the movie; if we put it after the T. rex attack, why would this kid who has just been attacked by a giant lizard go and ride one?”

David Koepp, quoted in Shay and Duncan (1993, p. 64)

Because Koepp was working on the screenplay at the 11th hour, this decision meant that work on the 1.5 m long baby Triceratops robot was abandoned literally days away from its completion, all so that the film would have a tighter, leaner story. As much as Koepp felt that the audience needed a reminder that dinosaurs were “innocent” animals following the T. rex attack, a child riding a bounding baby Triceratops would have been a tonal shift too far, and certainly out of character for a traumatised child. With this dinosaur scene cut, Koepp added a little more whimsy to the foraging Brachiosaurus sequence, allowing our shell-shocked characters to be reminded that dinosaurs aren't evil or vindictive. They're just animals, as Grant puts it, doing what they do.

Concept art for the Jurassic Park rafting sequence, swiped from the Jurassic Wiki. This doubtless would have been an action-packed scene, but would it have added anything to the film?

This was not the only planned dinosaur sequence that was cut for pacing and tone. Several parts of the novel that seemed tailor-made for cinema were abandoned, such as Muldoon tranquillising the Tyrannosaurus and the famous river sequence. The latter, where Grant and the kids escape a swimming T. rex in a raft, was included in all previous drafts of the screenplay and went as far as having concept art produced, but Koepp removed it without hesitation. In discussing why, he addresses the “too many dinosaurs” issue directly, noting that Crichton's novel was actually bogged down by its large number of dinosaur episodes. He remarked that “It seemed to me that at certain points in the book we were being taken on sort of an obligatory tour past every dinosaur the park had to offer", such that "the raft trip was rather redundant” (Shay and Duncan 1993, p. 55). Clearly, Koepp didn't consider dinosaurs for the sake of dinosaurs an excuse for their inclusion in Jurassic Park: they had to add something to the film to justify their presence. The result is that dinosaur scenes only constitute about 15 minutes of Jurassic Park’s two-hour runtime. Their off-screen presence drives the film, of course, but almost 90% of the film passes without a dinosaur in shot.

If we turn to literature, we find that this kind of reserved approach to creating a dinosaur story is in good company. Other classic works of "dinosaur" fiction such as Jules Verne’s 1864 Journey to the Centre of the Earth, Conan Doyle’s 1912 The Lost World and Ray Bradbury’s 1955 A Sound of Thunder feature prehistoric animals in memorable sequences but, like the first Jurassic Park movie, these are kept short and impactful. I wonder if this reflects a shared realisation about the narrative potential of fictional prehistoric animals: as initially exciting as they are, they quickly exhaust what they can contribute to a story. Most fictional dinosaurs invariably have to interact with people and their roles are essentially limited to inspiring awe or terror, which means their actions are either peaceful or violent. We can vary where and why these interactions occur, and we may gain additional mileage from featuring different prehistoric species, but it’s difficult not to basically rehash the same ideas and scenes over and over once dinosaurs turn up in a story. And because dinosaurs are real animals, we can’t ascribe crazy, unexpected biology or properties to them, either — not with a straight face, anyway. Jurassic World; Dominion was never going to end the series with a reveal that an evil interdimensional dinosaur was the real villain of the series all along, or show that the dinosaurs were really birthed by an awful, vengeful Megadinosaurus queen. More the pity, perhaps?

My take on the most famous scene from Ray Bradbury's 1955 A Sound of Thunder. This short story is possibly the ultimate example of lean dinosaur storytelling as it features only a single, short interaction with Tyrannosaurus. Despite this, it remains a highly effective, thought-provoking tale and contains some of the best prose describing the appearance and movement of a large theropod ever written. Check it out if you haven't.

Compounding these creative issues for dinosaur films are the huge budgets needed to create dinosaur visual effects. Movie dinosaurs are so costly that their films must appeal to broad, mainstream audiences to be financially viable, and this means avoiding creative choices that will alienate casual viewers, especially children and families. Anything too scientific and “boring” is unlikely to feature, as is anything too violent or horrifying. This, I suspect, is why the Jurassic films are the only game in town for dinosaur motion pictures. Whether humans meet dinosaurs through time travel, in a “lost world” setting or via resurrection from fossils, the Jurassic films are already exploring the full remit of what movie dinosaurs can do. There’s probably not enough creative space for another franchise to present their own, fully distinguished take on dinosaur scenarios, especially given the potential financial losses if such efforts flopped.

Back to the Park

In representing its own contained franchise, the Jurassic series represents a unique case study of attempts to escape these creative restrictions. But it seems fair to say that, even after six instalments, the franchise never really figured out how to get more agency from its reptile stars. Repetition, not innovation, is the order of the day, leading to essentially the same moments playing out in each instalment (as super-seriously scientifically documented by Dave Hone, see his tweet below). Instead of new dinosaur dramas, we simply get more of the same dinosaur scenes. This suggests a creative ethos of, when in doubt, add more dinosaurs!

Ramping up the dinosaur content began in the first Jurassic sequels but reached its apogee within the most recent films. Whereas Jurassic Park slowly led us into the world of recreated dinosaurs and established its setting, characters and story before letting dinosaur havoc commence at the one hour mark, the sequels have started their action sequences earlier and earlier. Jurassic World has Velociraptors attacking their handlers after 25 minutes, people are visibly chomped in the first five minutes of Fallen Kingdom, and Dominion is the least patient of all, showing prehistoric animals attacking people within the first minute. And this is where we can start to explore whether an “add more dinosaurs” approach has drawbacks, because all these extra dinosaur scenes absorb time from the fabrics that actually tie films together: stories, characters and themes. And, OK, we might ask who is really watching a dinosaur film for great characters and stories, but we've seen that perfectly serviceable, universally-liked dinosaur films can be done (Jurassic Park) and, moreover, screenwriters should be aiming to have something to hang a film on to give their dinosaur action agency. Putting characters in peril is toothless if we don’t care whether they survive or not. Writing a "dinosaur film" doesn't excuse filmmakers from attempting to make the best, most engaging film they can.

Viewed from this perspective, Fallen Kingdom and Dominion are especially full of what is ultimately pointless dinosaur action, wheeling out prehistoric animals to menace our heroes for a short time (often less than a minute) before moving on to the next, equally pointless encounter. Portions of these films are like riding a dinosaur-themed ghost train where dinosaurs pop out to roar at us before disappearing into the shadows, never to be seen again. And lest it be thought I'm some sort of film snob (I'm not: my benchmark for enjoying most films is how closely they approximate Evil Dead II), the tedium of such scenes was not lost on Steven Spielberg himself, who has candidly spoken of how bored he was making the (relatively) dinosaur-heavy The Lost World:

“I beat myself up…growing more and more impatient with myself… It made me wistful about doing a talking picture because sometimes I got the feeling I was just making this big silent-roar movie… I found myself saying ‘is that all there is? It’s not enough for me.’”

Steven Spielberg, quoted in McBride (2011, p. 455)

It’s hard not to contrast this creative approach and the impact of these dinosaur sequences with those of the first film. Jurassic Park clearly relied on the tried and true creative philosophy of “less is more” and carefully managed its story and tone so that its dinosaur action scenes, once unleashed, were genuinely exciting. But the successive films seem to have embraced a “more is more” approach that prioritises dinosaur violence over anything else. For me, this is one of the main reasons that the Jurassic World series has been such a flatline: the overabundance of dinosaurs roaring and fighting starts to get in the way of the films, actually undermining my enjoyment despite, in theory, adding to the excitement. To give an example, here are six minutes of the Fallen Kingdom volcanic eruption set piece. This takes place, for context, about 35-40 minutes in:

What stands out here is, first; wow, there are heaps of dinosaurs packed into this segment, but second, most are disposable, throwaway additions. The Baryonyx, which is never named, set up or returned to, comes and goes within 90 seconds. Likewise, the Allosaurus menacing the tumbling gyrosphere is there for a moment, and then gone. Clearly, the most important dinosaurs are the stampeding collective: they're what is really driving the action and story at this point, along with the erupting volcano. To give credit where it's due, I actually find the fleeing dinosaurs and eruption pretty engaging (as ridiculous as the galloping ankylosaurs and so are ) and, as our heroes shelter behind a fallen tree being smashed to pieces by charging dinosaurs, I'm curious to see what happens next. But then everything stops... so we can have a quick dinosaur fight scene. No more eruption, no more stampede. All the scene's momentum is discarded so Carnotaurus can slowly stalk around the human characters before getting into a fight with Sinoceratops. Why these dinosaurs are fighting rather than fleeing like all the rest isn't clear, but within seconds none of it matters: the Carnotaurus is put down (killed? I'm not sure) by the passing Tyrannosaurus, which then stops to roar in defiance despite the island literally exploding behind it. The T. rex then leaves, paying no attention to the humans, and the eruption and dinosaur stampede resumes as if someone has thrown a switch offscreen.

Along with killing all momentum, this dinosaur fight is confusing and, uh oh, gets us asking questions about the film. Why weren't these dinosaurs running away? Why didn't the Carnotaurus predate the easily-caught people instead of breaking off to attack a multi-tonne horned dinosaur? Why did the T. rex attack the Carnotaurus and then just walk off? Does T. rex watch Parks and Recreation and wanted to help out Andy Dwyer? Where did all the stampeding dinosaurs go? While the Baryonyx and Allosaurus portions are so superficial and inconsequential that they don't hurt the flow of the film by themselves (if, admittedly, such incessant "dinosaur cameos" of the World films do become repetitive and grating, especially in Dominion), the Carnotaurus sequence totally distracts from what should be our main focus at this part of the film. I guess the logic was that giant reptiles fighting is exciting and will thus make the eruption more engaging, but it actually does the opposite: it sucks energy and drive from the movie. It also presents a problem for story progression because it leaves the film struggling to raise the stakes later on. How do you create a situation more dangerous and exciting than dinosaurs fighting on an exploding island? Doesn’t everything seem a bit flat and dull after that? These additions are so out of place that I strongly suspect they were only added because the film otherwise lacked large theropods fighting, as if that's the only way to put drama into a dinosaur film.

Unrelated clip from Jurassic Park.

The irony in this, of course, is that the World films also revel in nostalgia for the first Jurassic Park, and yet the creative philosophy behind them is almost antithetical to that used by Koepp and Spielberg. In my view, this it shows little understanding of what made the first film great. We talk a lot about how the revolutionary dinosaur effects of Jurassic Park were integral to its success, and how its portrayal of post-Dinosaur Renaissance science blew audiences away. We also acknowledge that Jurassic Park is a rare "lightning in a bottle"-style production, the output of some of the best filmmakers of the early 1990s working at the top of their game. These are all true points, but we should add “creative restraint” to this list of success factors. A “less is more” dinosaur philosophy allowed for a logical, well-paced story with likeable, charismatic characters and truly iconic, memorable dinosaur scenes. It might only be 12% dinosaurs, but that's enough to make their screen time special and satisfying without any risk of it becoming boring or repetitive. This allows the dinosaur sequences to be the emotional high points of the movie, all choreographed perfectly to the developing story. The super-tense mid-movie T. rex attack initiates the start of chaos on the island. The Velociraptor kitchen scene ups the ante as we approach the climax, suddenly throwing the kids — hitherto shielded by adults against danger — against two smart, deadly predators. And the climactic battle between Velociraptor and Tyrannosaurus finishes the film with a flourish, saving our heroes at the last moment in the most exciting way possible. These are dinosaur action sequences that build upon one another and drive the story, such that we know, intuitively, where we are in the movie. You needn’t look at your watch to know that the sight of the Tyrannosaurus roaring as the “when dinosaurs ruled the Earth” banner slips past means the film is over. This is blockbuster entertainment done with real craft and care, and it remains the best dinosaur film ever made not despite its lack of dinosaurs, but because of its lack of dinosaurs. It’s no surprise that the World films mine the iconography of Jurassic Park so frequently because, in never taking a break from throwing dinosaurs around, they never established compelling enough stories, characters or moments to create their own iconic elements.

So perhaps, as contradictory as it seems, the Jurassic film series makes a case that dinosaur films can work a lot better when they have fewer dinosaurs or, at least, when dinosaur action isn't prioritised over more fundamental and important components of filmmaking. The problems outlined here are not unique to the Jurassic sequels, of course: we could level the "too many dinosaurs" criticism at plenty of other films, from Peter Jackson’s 2005 King Kong to even the likes of 1966’s One Million Years BC. And I think it's important to add that "too many dinosaurs" doesn't necessarily ruin a film, but they might diminish our enjoyment to greater or lesser extent.

Ultimately the point made here is just a dinosaur-specific reminder that special effects and action alone do not make good films: it's memorable stories, characters and situations that resonate most with critics and audiences alike. So if this really is the end of the Jurassic franchise, let’s hope that the next generation of dinosaur films doesn’t just bring fresh ideas, fresh stories, and fresh palaeontological science to our screens, but that they also reflect on a crucial question for this niche genre. Can dinosaur movies have too many dinosaurs? Well, if you want everyone to enjoy your film, and you want to make a film that will last the ages, then maybe yes, yes they can.

Enjoyed this post? Support this blog for $1 a month and get free stuff!

This blog is sponsored through Patreon, the site where you can help artists and authors make a living. If you enjoy my content, please consider donating as little as $1 a month to help fund my work and, in return, you'll get access to my exclusive Patreon content: regular updates on upcoming books, papers, paintings and exhibitions. Plus, you get free stuff - prints, high-quality images for printing, books, competitions - as my way of thanking you for your support. As always, huge thanks to everyone who already sponsors my work!


  • McBride, J. (2011). Steven Spielberg: A Biography, 2nd edition. University Press of Mississippi.
  • Shay, D., & Duncan, J. (1993). The Making of Jurassic Park. Ballantine Books.

Tuesday, 31 May 2022

The mad, mad, mad stilt-legged tyrannosaurid hatchling (and other efforts at reconstructing baby tyrants)

By now many readers will have seen the excellent, excellent BBC/Apple TV+ documentary Prehistoric Planet, a show being widely celebrated as the most significant televisual portrayal of dinosaurs since 1999’s seminal Walking with Dinosaurs. There’s a huge amount to say about the reaction to Prehistoric Planet as well as how it was put together. I’m proud to say I was involved as a concept artist and consultant but, for now, those of us involved with the show have been (understandably) asked not to give too much away. We can, nevertheless, use the programme as a jumping-off point to discuss some cool dinosaur science, and that’s what I want to briefly do today.

One of the most memorable scenes in Prehistoric Planet is the opener of the first episode, and you might be familiar with it even if you haven’t seen the full series. It’s the sequence featuring the swimming Tyrannosaurus and his juveniles crossing a small body of water to engage in some beach-related foraging. Part of this scene featured in a promotional teaser that dropped so many jaws earlier this year, where Tyrannosaurus juveniles hunted turtles on a beach. If you've somehow missed this, here it is.

The official sneak-peek for Prehistoric Planet, from the Apple TV+ YouTube channel.

It’s easy to buy these superbly rendered, fluffy, long-legged and big-eyed baby tyrants as 100% accurate takes on such animals because they look so real. But under their wireframes and digital rigging, these juvenile dinosaurs are based, in fact, on hypothetical reconstructions, not fossil skeletons. Despite the intense interest in Late Cretaceous North American fossil sites, hatchling tyrant dinosaurs are virtually unrepresented by fossils and the first genuine remains of such animals were only described in 2021, by Greg Funston et al. These important finds constitute a piece of lower jaw, a tooth, and a foot claw from embryonic individuals of Daspletosaurus and Albertosaurus. Each sheds a little light on the size and proportions of baby tyrannosaurs, but we’re still far, far away from a complete picture of their entire osteology. Thus, to date, the only way to restore the life appearance of baby tyrants with some degree of scientific rigour has been to extrapolate their proportions from older, larger individuals. We’ve been attempting this activity for at least 50 years and, even now, we struggle to make accurate, or at least statistically sound, models of baby tyrant appearance.

The first effort at predicting hatchling tyrant anatomy was published in Dale Russell’s 1970 paper on the tyrant dinosaurs of Canada. Russell predicted the proportions of a hatchling “Albertosauruslibratus (=Gorgosaurus libratus today) by calculating scaling trajectories of larger tyrants and projecting them to an individual with a 100 mm long femur. The resultant image is one that might be familiar to many readers, as it has appeared in subsequent dinosaur books and papers. I certainly remember my own first encounter with it in David Norman’s influential 1988 Normanopedia Illustrated Encyclopaedia of Dinosaurs, as it looked very different to the pop-culture plush toy-like baby dinosaurs I was familiar with (hello, The Land Before Time et al.).

Dale Russell's hypothetical Gorgosaurus libratus hatchling, from Russell (1970).

Russel’s prediction shows baby tyrants as long-legged, long-tailed and small-bodied animals that were very different to their parents, a consequence of the pronounced allometry that shaped tyrannosaurs as they grew. The overall animal, he calculated, was dog sized: just over 75 cm from the snout to the end of the tail. Some aspects of Russell’s model, including the shapes of the bones themselves, were created by “juvenilising” the bone shapes of adult albertosaurines and, even today, it's a good-looking skeletal. It certainly matches what we see in other non-avian dinosaur embryos and hatchlings, which are generally leggy animals adapted for precocial, relatively independent early lives. It’s probably this skeleton that a lot of palaeoart and dinosaur documentaries have based their baby tyrants on as, all these years later, it's still one of the only published hatchling tyrannosaur skeletals available.

In 2003 another attempt to predict tyrannosaur hatchling proportions was made by Phil Currie. Armed with more specimens and thus more metric data, Currie was able to provide more informed tyrant scaling regimes and, in theory, give us a superior prediction of hatchling proportions than Russell’s effort of three decades prior. As before, his scaling was to an individual with a 100 mm long femur, and the result was, again, dog-sized. Currie didn't specify what tyrannosaur he was modelling specifically, so his data can be viewed as a generic tyrannosaurid, although albertosaurine scaling metrics were prioritised where they differed significantly from those of tyrannosaurines. Because Currie (2003) only presented the results in a data table and did not illustrate the resultant hypothetical hatchling, I took the liberty to restore the animal with his suggested proportions myself*. And, holy moly…

The stilt-legged tyrant hatchling, restored after the dimensions given in Currie (2003). As explored below, the data behind this reconstruction were identified as unbelievable in Currie's original paper: this is not what Phil Currie (or anyone else) seriously thinks juvenile tyrannosaurus looked like! But it is what models of tyrannosaur ontogeny, as understood in 2003, predicted for a tyrant of hatchling dimensions.

…those are some l-o-n-g legs. They’re slightly maddening to look at, in fact. Like it’s been teleported in from the Nightmare Before Christmas meets Prehistoric Planet Super Crossover Spectacular. While the rest of the animal isn’t too dissimilar to Russell’s baby gorgosaur, the tibia is 60% longer and the metatarsals 220% longer, creating a tiny dinosaur on stilts. The result is a theropod with leg proportions outside of anything known within Dinosauria: even long-legged birds, like stilts, secretary birds and seriemas, are being put to shame. Needless to say, if anyone seriously thought that this is what baby tyrant dinosaurs looked like we’d be considering all sorts of ecological and biomechanical implications. Were baby tyrants waders? Specialists of prairies and open habitats? Did they make money on the side at Mesozoic carnivals as stilt walkers? What the heck is going on?

*I had to take lengths of the vertebral column and manus from Russell (1970), as these were not modelled in Currie (2003).

But, of course, no-one does think that this is what hatchling tyrannosaurs looked like. The outlandish hindlimb proportions of this model were dismissed as unbelievable by Currie (2003) as quickly as they were introduced, and the whole exercise ended with a blunt cautionary note: “there are limitations to what can be done in extrapolating this data.” (Currie 2003, p .663). And before anyone asks, it's worth stressing that Currie's values were not errors or the outputs of wrongful methodology: they're simply what fell out of legitimate, perfectly normal scaling equations. The "limitations" Currie referred to are fundamental difficulties with scaling the proportions of extinct animals outside of observed ranges. Such issues include low sample sizes, our scaling curves being skewed by outliers and overall low confidence intervals, but it's unusual to talk about these as problems for scaling tiny animals. We're generally much more used to these frustrations when trying to scale smaller animals to the size of giant adults. 

And strange as it seems, I admit to finding Currie’s stilt-limbed tyrant baby a more profound example of these issues than our usual subjects of scaling woes, like titanic sauropods or giant pterosaurs, because we know so much more about small dinosaur proportions. It's easy to spot these data as (probably) “wrong” because they're so out of the ordinary, but concerning proportions are harder to intuitively identify in animals beyond the size limits of anything ever witnessed by a person. It's a good reminder that any extrapolation is viewed as shaky from a mathematical perspective, and recalls Knut Schmidt-Nielsen's comments in his classic 1984 book Scaling: why is animal size so important: "unless we fully understand all the pertinent factors involved (and that is not likely to happen in a biological system), going beyond the limits of observation is not simply chancy, but outright perilous” (p. 25). It’s perhaps only when we see relatable, but obviously wrong-looking reconstructions like the one above that we’re confronted with this reality. And while we basically have no choice but to extrapolate and go beyond data limits when dealing with certain unknowns in the fossil record, it's good to come back to Earth from time to time and realise the unreliable nature of the mathematics we're using. So many extrapolations we're familiar and comfortable with might be just as crazy as that lanky-limbed hatchling, we just don't see them as obviously "wrong". 

All this said, that stilt-legged tyrant baby still has some utility. While it probably doesn't genuinely reflect what baby tyrants looked like, it does serve as a great visualisation of the allometry expressed through tyrannosaur ontogeny. If we compare the stilt-legged model with a regular-old T. rex, for instance...

The mad stilt-legged hatchling vs. a large adult Tyrannosaurus, based on "Sue".
...we get a good sense of how tyrant bodies grew into their legs as they progressed from hatchling to adults. We can also see that the head length remained about proportionate to femur length and that the arms grew relatively slowly, appearing to "shrink" a bit en route to adulthood (Currie 2003). Of course, in detail, there's actually a mosaic of different allometries occurring through growth: the head doesn't lengthen proportionately, for instance, but it does deepen. The arms and legs don't really "shrink" as one unit, either, but actually at varying rates in different parts of each limb (Currie 2003). Because the stilt-legged hatchling is our understanding of tyrannosaur scaling regimes expressed to an absurd degree, the reality of tyrannosaur ontogeny probably wasn't quite as extreme as the graphic above suggests, but it might not be too far off. Both Russell's (1970) and Currie's (2003) data point to long-legged, shallow bodied tyrant hatchlings and that's the model we should generally follow, even for chunky, robust animals like T. rex and Tarbosaurus. As noted by Currie in the same 2003 paper, "allometric differences among mature specimens of different [tyrannosaurid] species are shown to be trivial when compared with the allometric differences associated with growth". The stilt-legged tyrant (and more recent work and studies on this same topic) makes that crystal clear.

Currie's paper is now almost 20 years old so, to wrap this up, one last question: have we made any progress in being able to reconstruct baby tyrants reliably in recent years? To be frank, no, we don't yet have the data needed to clear the problems outlined above. Things have moved ahead thanks to Greg Funston and colleagues (2021) who, finally, have been able to factor some embryonic tyrant fossil material into their scaling equations. These have generally pointed to animals of the same size and shape as predicted by Currie and Russell, but their 95% confidence intervals (CI) for many predictions are still enormous (which means, in plain terms, that the true proportions may have been very different to the predicted ones). For instance, Funston and colleagues scaled their Albertosaurus embryo dentary to a body length 715 mm, but with a CI range of 496–897 mm. Their (seemingly) larger Daspletosaurus specimen, represented by a toe claw, scaled to 1101 mm long, with a CI of 250–5954(!) mm. Estimates for their femoral lengths were also not well constrained, at least in Daspletosaurus, with CI values of 76–256 mm. Some of the upper ranges of these CIs are consistent with larger tyrant specimens that are already several years old, and they're thus far from the measurements we'd expect from embryos or hatchlings (Funston et al. 2020). Our most charitable assessment is that we're consistently getting the same basic signals about tyrant hatchling form, so we're probably on the right track, but we have a long way to go before we'll have reliable body proportion predictions for tiny tyrants. The discovery of more small tyrannosaurids would go a long way to helping this but, of course, a skeleton of an embryo or hatchling would be the best and most direct way to resolve any uncertainty. 

Enjoyed this post? Support this blog for $1 a month and get free stuff!

This blog is sponsored through Patreon, the site where you can help artists and authors make a living. If you enjoy my content, please consider donating as little as $1 a month to help fund my work and, in return, you'll get access to my exclusive Patreon content: regular updates on upcoming books, papers, paintings and exhibitions. Plus, you get free stuff - prints, high-quality images for printing, books, competitions - as my way of thanking you for your support. As always, huge thanks to everyone who already sponsors my work!


  • Currie, P. J. (2003). Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the upper Cretaceous of North America and Asia. Canadian Journal of Earth Sciences, 40(4), 651-665.
  • Funston, G. F., Powers, M. J., Whitebone, S. A., Brusatte, S. L., Scannella, J. B., Horner, J. R., & Currie, P. J. (2021). Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America1. Canadian Journal of Earth Sciences, 58(9), 756-777.
  • Russell, D. A. (1970). Tyrannosaurs from the Late Cretaceous of western Canada. National Museum of Natural Sciences, Publications, in Paleontology, 1, 1-34.
  • Schmidt-Nielsen, K., & Knut, S. N. (1984). Scaling: why is animal size so important?. Cambridge university press.

Saturday, 30 April 2022

Introducing The Art and Science of the Crystal Palace Dinosaurs: out next month!

Behold, the cover of The Art and Science of the Crystal Palace Dinosaurs, available for preorder now, and on general sale next month!

Next month sees the publication of what might be one of the more important projects I’ve ever been involved with: a new book, The Art and Science of the Crystal Palace Dinosaurs, co-authored with Ellinor Michel and published by Crowood Press. This is a large, richly illustrated hardback that, as the title suggests, discusses the creation, scientific content, artistry and historic legacy of the world-famous Crystal Palace Dinosaurs, a story we tell in lots of detail and with hundreds of photos, illustrations and diagrams, both vintage and modern.

The good news is that, as of a few days ago, the book became officially available for preorders so palaeoart and history of science aficionados can start bagging copies for delivery next month. The exact publication date has been hard to pin down because of the many global incidents disrupting shipping and transportation, but mid-May is looking like the point when it will be available. You’ll be able to pick it up from just about wherever books are sold, but, with apologies to North American readers, you’re going to have to wait a bit longer for your release as you’re on a different distribution network to us here in the UK (that’s not to say you can’t order it from Europe and have it shipped over to you, of course). The cover price is £30 and, as we’ll detail more below, every sale directly contributes towards the care and maintenance of the Dinosaurs themselves.

With preorders now being taken, we can finally start to talk about our book more openly. The Crystal Palace Dinosaurs can be described, without exaggeration, as some of the most famous pieces of palaeoart in the world and they are true mainstays of dinosaur books and documentaries. They encompass a series of Victorian prehistoric animal sculptures and recreated geological features based in Penge, in the southeastern suburbs of London. The most famous components of the site are the prehistoric animal models, which were built between 1852 and 1855 by their chief architect and artist, Benjamin Waterhouse Hawkins, ostensibly under the watchful eye of Victorian palaeontological mastermind Richard Owen. Much of the original site is still with us today and can be visited freely if you want a glimpse of what cutting-edge palaeontology looked like in the early 1850s. Of the 30 sculptures still standing, the four dinosaurs, representing Iguanodon, Megalosaurus and Hylaeosaurus, are genuine icons of 19th century palaeoart, and a large amount of effort has been exerted over the years to keep the site in fair condition (though read on).

The face that launched this particular ship: the broken Crystal Palace Megalosaurus, as photographed by the Friends of Crystal Palace Dinosaurs in May 2020. As this image shows, the conservation risk to the site is very real and a sense of wanting to do something to help is what got this book rolling.

The origins of our book give a pretty good idea of our aims and hopes for this project. In May 2020 the jaws of the Crystal Palace Megalosaurus were severely damaged in a mysterious incident: the cause is assumed to be final succumbence to weathering or simply vandalism, or a combination thereof. Both, sadly, are common agents of deterioration at the site. The photos of the damaged sculpture shared online were pretty disheartening and, having been working with the Friends of Crystal Palace Dinosaurs to augment their website (you may remember a series of blogposts I wrote related to this project from 2019: part 1, 2, 3 and 4), I wondered if turning my notes and illustrations into a book that we could sell to benefit the sculptures was a good idea. I floated this to Ellinor, who's chair of the Friends of Crystal Palace Dinosaurs, and we then approached Crowood, who you may know from my Palaeoartist’s Handbook and Emily Willoughby’s Drawing and Painting Dinosaurs, to make the project a reality. The pitch was to analyse the Crystal Palace Dinosaurs as an enormous palaeoart project where we looked at their conceptualisation, construction and legacy in context with 19th century palaeontology and palaeoartistry while also, in addition, creating a book that would directly benefit the Dinosaurs themselves. To that end, neither Ellinor nor I have received a penny for producing it: all the usual advances and royalties that go to book authors are instead being donated to the Friends of Crystal Palace Dinosaurs to further their efforts in understanding and maintaining the Dinosaurs and their home.

We finished writing the book in August 2021 and, I must admit, it was a lot more work than I initially anticipated. This not only reflected the complications of writing a book during Covid-induced national lockdowns but also the volume of material to discuss. Ellinor and I are far from the first scholars to write about the Crystal Palace Dinosaurs, with notable contributions to the literature having been made by Martin Rudwick (1992), Peter Doyle (Doyle and Robinson 1993, 1995; Doyle 2008), Jim Secord (2004), Gowan Dawson (2016), Valerie Bramell and Bob Peck (2008), and Steve McCarthy and Mick Gilbert (1994). Our palaeoart-focus, aided by the modern searchability of digital archives, meant we were able to unearth a lot of obscure details about the Dinosaurs not mentioned elsewhere. My initial thoughts that this would be a quick and straightforward project — perhaps not much more than expanding and stapling my blog series together and writing a few discussion chapters — quickly evaporated when the amount of information to sift through and analyse became apparent. The book ballooned by 20,000 words from my initial projection and it was still a squeeze to get everything in. My somewhat immodest view is that we’ve compiled a new, richer synthesis about the Crystal Palace Dinosaurs through both our own findings as well as coalescing important points raised by other recent authors into our text; in doing so, we’re helping to establish a deeper narrative about this familiar, but still only partially understood site.

A sneak peek at one of the early chapters of the book, focusing on the 1853 New Year's Eve banquet held inside the clay mould of the standing Iguanodon.

Wrangling the story of the Crystal Palace into some sort of order created a book of three parts and 13 chapters:

Part 1. Islands covered by strange figures

1. Historic prehistory in South London

2. Ancient worlds through a Victorian lens: planning the Geological Court

3. Bricks, iron and tiles: rebuilding the past

Part 2. Animals long since extinct

4. The sculptures: Mammals

5. The sculptures: Mosasaurus hoffmanni

6. The sculptures: Flying reptiles

7. The sculptures: Dinosaurs

8. The sculptures: “Teleosaurus chapmani

9. The sculptures: Enaliosaurs

10. The sculptures: “Labyrinthodon

11. The sculptures: Dicynodon

Part 3. A difficult and, perhaps, too bold, attempt

12. The reception and legacy of the Geological Court

13. Past becomes future: the conservation of the Geological Court

You can gauge a lot about the book from that chapter list but, to get a superior sense of what we cover, let’s go into a little more detail.

Part 1. Islands covered by strange figures

The first section serves as an introduction to the world of the Crystal Palace Dinosaurs by discussing the principles and individuals behind their construction as well as the building of the site itself. Very quickly within the narrative, we establish that the label “Crystal Palace Dinosaurs” is not always useful or apt because it omits the major structures that accompanied Hawkins’ palaeontological sculptures: the Geological Illustrations. These are a series of reconstructed geological outcrops that extend around the Dinosaurs' landscape, being created either by importing tonnes of rocks chosen for their age and fossil content from sites around the UK or, alternatively, by recreating complex sedimentary strata using building materials. These rocks were not distributed haphazardly around the park, either, but in realistic stratigraphic congruence: in other words, they are in proper geochronological order, such that Triassic rocks are next to Jurassic rocks, which are then next to Cretaceous rocks, which are then next to "Tertiary" rocks and so on, and the palaeontological sculptures were placed around these in an appropriate geological context. The almost uninterrupted sequence (there are deliberately no Permian rocks) allows visitors to walk continuously from the Devonian to the Quaternary, seeing signature rock types and fossil species along the way.

Our map summarising the full extent, both planned and actual, of the Geological Court. Note the complexity of the geology as well as large numbers of missing models, denoted by red graphics and text, and the extent of never-realised models on the Tertiary Island.

Mapping the strata as real geological features reveals a very sophisticated and complex arrangement of manufactured geology, even incorporating simulated unconformities (missing rock layers, which account for the absence of Permian features) and faults to condense much of the geological column, as it was known in the 1850s, into a small area (Doyle and Robinson 1993). The economic importance of geology to Victorian culture was highlighted with not only a partly artificial coal seam (real coal, partially fake rocks) but a motherflippin’ artificial mine and cave, some 20 m long, within which manufactured stalactites and floatstones, along with mining tools, gave visitors the experience of traversing a real lead mine. The unsung heroes of this forgotten aspect of the park were geologists David Thomas Ansted and James Campell, and we suggest that they need as much recognition as Hawkins or Owen for their contributions to this project. Reflecting this, we mostly refer to the “Geological Court” instead of “Crystal Palace Dinosaurs” throughout the text. This was the name originally given to Crystal Palace’s combined geological and palaeontological display and better encapsulates the full extent of the project. The Geological Illustrations receive a lot of attention in our book, for which we need to tip our hat to Peter Doyle for laying critical interpretive groundwork that we could build on (Doyle and Robinson 1993, 1995; Doyle 2008).

Today located far away from public footpaths is the Carboniferous Mountain Limestone, which contains an artificial cave and lead mine. This is one of the most complex of all the Geological Illustrations and it's also huge: the original Mountain Limestone "outcrop" represented 90 tonnes of real Carboniferous limestone imported from Matlock, in the UK Midlands. This was removed in the mid-20th century so the Mountain Limestone you see now (including in this photo) is a reconstruction from the early 2000s. The cave is original, but is now half-filled with sediment and inaccessible to the public.

Our opening chapters also offer a deep dive into the construction of the models themselves, both in terms of the palaeoartistic principles employed by Hawkins as well as the physical building process. We speak a lot about the importance of 19th century “anatomical correlation” in predicting the life appearance of fossil animals from scrappy bones (Dawson 2016) and analysed photographs and illustrations of the models under construction — some familiar, others less so — to obtain new details of how these often gigantic creations* were assembled. It seems there was no one method behind their realisation, but a mix of techniques that probably depended on practical considerations as well as the availability and cost of materials. The Megatherium was unqiuely carved from blocks of limestone (Doyle 2008) while most of the models were composites of bricks, concrete and metal that could be moved about the site on carts and trollies. The dinosaurs were constructed more like houses, adding bricks, mortar and concrete around deep foundations and enormous iron frameworks (Hawkins 1854). The construction of the Court took place under the eager eyes of international media, and we also use these early chapters to review this interest in the Geological Court. Part of this discussion focuses on the famous 1853 New Year’s Eve banquet in one of the clay Iguanodon moulds. This event has been retold so often that a certain amount of truth has leaked from the original story but, using newspaper accounts and archive material, we think we’ve managed to tidy up what truly happened and answer obvious questions, such as how several dozen people squeezed into a very large, but not enormous dinosaur belly (spoilers: there was an adjoining table, so not everyone sat within the Iguanodon itself. See this Twitter thread if you’d like to know more).

*And I do mean “gigantic”: the Megalosaurus is 12 m long and the Iguanodon and Temnodontosaurus are not much smaller. Photos don’t convey how seriously big some of these sculptures are, and another novelty of our book is providing basic measurements of each one, an obvious aspect to report but, to our knowledge, unrecorded until now. My boots are still drying out from wading through the waters surrounding the marine reptiles.

Part 2. Animals long since extinct

The middle of the book is a sculpture-by-sculpture analysis of the palaeontological creations, comprising the mammals, the various marine reptiles, the pterosaurs, dinosaurs, amphibians and Dicynodon. This is the longest section of the book and perhaps the main draw for palaeoart fans. Alas, we still don’t have much insight into Hawkins’ original plans for his sculptures — no relevant notebooks, sketches or correspondence to this effect are known anywhere — but efforts were made to “reverse engineer” the palaeoartistry of each model by comparing what Hawkins produced against palaeontological science of the 1850s. This was similar to the approach I used in my Crystal Palace Dinosaurs blog posts but we go way beyond the details discussed in those articles. Each sculpture is given a photographic montage to show features of interest as well as a diagram showing what fossil specimens or modern animals likely referenced each body part.

An example of the breakdowns given to each restored species at Crystal Palace: what fossils were available to inform Hawkins' restorations? Here, we see how the Iguanodon is really a hodgepodge of different iguanodont material, and not a reconstruction of a single species.

Analysing the sculptures at this level allowed us to break down their “real” identities, and we can see today that many were chimeric mixes of different species. "Labyrinthodon pachygnathus", for instance, can be considered an early attempt at reconstructing the (possible) ctenosauriscid (those neat sail-backed croc-line archosaurs) Bromsgrovia rather than a prehistoric amphibian, and the known reference specimens for Iguanodon do not include any “true” Iguanodon material in the sense that we recognise it now. It’s actually difficult to know what to classify the Iguanodon as in a modern sense, as at least two, and maybe three iguanodont species were factored into its restored form. If we force the issue, Barilium dawsoni, a large iguanodont that was used to establish the size of the Iguanodon sculptures and other components of its anatomy, is perhaps the most dominant species used in the build, so maybe that’s the closest we have to the “true” identity of these sculptures.

Assessing the fossil composition of Hawkins' recreations allowed us to ally species to the Crystal Palace project that are not normally associated with it. They include the possible ctenosauriscid Bromsgrovia walkeri, which is too poorly known to restore itself, but might have resembled Arizonasaurus babbitti. This is a nice reminder that the British fossil record contains a lot of remarkable animals, even if some of their fossils are less than exemplary.

We also compare each species with modern interpretations of the same taxa, and I used these sections as an excuse to sneak in some of my own artwork to show 21st views of the Crystal Palace species. These are all-new restorations rather than recycled images from my 2019 blog posts, and some feature fun callbacks to classic Hawkins imagery. It’s easy to be a little blasé about some of the Crystal Palace taxa because many are well-trodden palaeoart subjects, like Megalosaurus, Megaloceros, Iguanodon etc., but the reality of some of the animals restored for the Geological Court is pretty wild. Leptonectes, for instance, with its grumpy face and massive pectoral fins, is definitely an unusual ichthyosaur, while Cimoliopterus — the animal behind the Chalk pterosaurs — belongs to the long-winged, giant-headed pterosaur group Ornithocheiromorpha. Among everything else, this book was a nice opportunity to draw attention to some lesser-known British fossils that, owing to being poorly preserved, are often overlooked.

I created something like 30 new paintings for The Art and Science of the Crystal Palace Dinosaurs, including this image of the uppermost Triassic ichthyosaur Leptonectes tenuirostris. This reality of this frowny-faced, giant-flippered ichthyosaur is quite different to what was restored at Crystal Palace, where it looks a lot more conventional.

Looking at the sculptures in such detail allowed us to write at length about how excellently executed they are, from their depicted musculature and fine anatomical detailing to their considered behavioural depictions. Hawkins was really ahead of his time by creating palaeoart that showed plausible, realistic-looking animals rather than, as was then common, either super-conservative reconstructions with minimal detailing or, more commonly, fantastic restorations that have more in common with mythology than zoology. Interestingly, we did find evidence that Hawkins considered more aggressive and dynamic posing for at least some of his models before settling on their more sedate poses.

We also compared Hawkins' work to Owen’s publications to gauge how closely Hawkins was working with his consultant. The large number of deviations we found is, we argue, further evidence of Owen being a pretty useless consultant. Owen's contributions to the project have been enormously overstated, with records showing that he neglected to visit the construction site or Hawkins' workshed outside of a handful of instances, and that was also largely ignorant of the appearance of the sculptures until he saw them completed and installed in the park grounds (Secord 2004; Dawson 2016). That Hawkins made some errors Owen could have corrected is entirely consistent with this narrative. Owen also loses points in our dissection of his 1854 Geological Court guidebook, which is often inconsistent with the content of the site itself. Indeed, Owen’s slim overview of the site didn't mention major components of the display, including the bulk of the Geological Illustrations and mammal sculptures. Owen doesn’t quite warrant writing out of the history of the Geological Court, but he definitely needs recasting as a peripheral character who did little to help Hawkins and the Crystal Palace Company accomplish their goals.

The missing paleontological sculptures of Crystal Palace: two pterosaurs, three "Anoplotherium gracile", one Palaeotherium magnum and one female Megaloceros (red arrow). Note the different face on "Palaeotherium minus" and the real antlers on Megaloceros; both have since been replaced with substitutes that no longer resemble the originals. The photographs in this image were kindly provided by the Crystal Palace Foundation.

The final, and perhaps most significant, component of these chapters I want to mention is their discussions of missing models. Exactly how many models and the number of different species they represent has been variably interpreted (e.g. Doyle and Robinson 1993; McCarthy and Gilbert 1994) because of the complex and tumultuous history of certain sculptures. Some have been moved about, mislabelled or even been removed from the site over the last 170 years, leaving researchers to draw different conclusions about what’s left in the park today, and what was there originally. We attempted to get definitive numbers on both counts and concluded that our modern Geological Court holds 30 sculptures of 21 species. In 1855 however, when the Court was at its most complete, it had 37 sculptures and 24 species. That’s a higher count than any previous calculation, but one we’re confident about thanks to data from historic guidebooks, illustrations and photographs. The seven lost models include a fourth Megaloceros (specifically, another model of a reclined doe), the two Jurassic pterosaurs, the large Palaeotherium species P. magnum and, finally, three models of “Anoplotherium gracile”.

The "Megaloceros fawn", which we reidentify as a different animal entirely: "Anoplotherium gracile" or, in modern terminology, Xiphodon gracilis. As explored more below, there is no evidence that this animal represents a juvenile Megaloceros but plenty of evidence to tie it to Xiphodon. How and why this sculpture became associated with the Giant Deer display is not currently understood.

The existence of the latter three sculptures is worth going into a little more because it’s one of our biggest discoveries and ties into another important conclusion. If you’ve visited the Crystal Palace Dinosaurs you’ll know that a small Megaloceros fawn sits close to the three surviving Giant Deer adults in the Quaternary end of the Court. We present evidence that this, in fact, is not a juvenile deer at all, but the sole survivor of a group of four “Anoplotherium gracile”. Known as Xiphodon gracilis today, the presence of this guanaco-like Eocene species among the Crystal Palace fauna has long confused researchers because, despite being mentioned in several guidebooks, it was thought that no obviously Xiphodon-like animals were known at the site, nor were any witnessed in familiar vintage photos or illustrations. Some authors have attempted to reconcile these facts with a more gracile Anoplotherium commune sculpture, assuming that this represented Xiphodon (Doyle and Robinson 1993; McCarthy and Gilbert 1994), but I’ve never found this interpretation convincing. Even in the 1850s scholars knew that A. commune and Xiphodon contrasted in size, build and proportions. The “fawn”, however, is a dead-ringer for historic takes on Xiphodon anatomy, and an image of Hawkins’ workshed shows this same sculpture with three others of the same species (above). Conversely, we found no evidence whatsoever of a Megaloceros fawn existing at the site before modern times. Putting these pieces together, it looks like the blank spots in the history of the displays are large enough to both obscure the loss of three Xiphodon sculptures and also hide the relocation of the surviving Xiphodon alongside the Giant Deer, where it has masqueraded as a juvenile Megaloceros for the entirety of living memory. I admit to finding this as worrying as I do exciting. Discovering not just one Xiphodon but records of four is very cool, but it also shows how enormous the holes in our knowledge of the Geological Court are. If something as fundamental as the existence of a whole set of sculptures can go virtually unrecorded, what else are we missing?

Part 3. A difficult and, perhaps, too bold, attempt

The last section contains two chapters, one on the complex legacy of the Geological Court and another on its constant battles with degradation. The chapter on the post-development history of the Crystal Palace Dinosaurs is one of the largest in the book and attempts to make sense of a complicated story. It’s fair to say that they were neither the major successes nor major failures they have been portrayed as by different authors, and reactions to the Geological Court have fluctuated enormously in the last 170 years. Early scientific views, for example, were very hostile. Hawkins’ rapidly-dating sculptures vindicated palaeoart sceptics who saw full, elaborate restorations of extinct life as premature and, as has been noted by others (Secord 2004; Nieuwland 2019), the Geological Court seems to have lessened appetites for palaeoart among many, perhaps most, 19th century palaeontologists. It took decades for more sympathetic views to develop among academics (e.g. Hutchinson 1893; Becker 1911) and for palaeoart to regain its early 19th century mojo. Among the public, the Geological Court was a source of equal parts fascination and confusion, as the displays — which lacked any sort of signage or explanation, as per Crystal Palace Company policy — represented content too far from general knowledge for lay audiences to grasp their significance. Some gathered that they were looking at animals that existed before humans (Martineau 1854), but others thought they were grossly-distorted sculptures of living species, or even attempts to show the dangers of intoxication (Owen 1894). As well as cataloguing this diversity of opinion, we also cover the cancellation of the Geological Court’s development, the unrealised models and geological components (in addition to at least a dozen more mammals and birds, planned works included additional Cambrian, Silurian and “Tertiary” Geological Illustrations), vintage Crystal Palace Dinosaur merchandise, and the career impacts of the project for Hawkins and Owen.

A selection of dinosaur palaeoartworks produced after Crystal Palace. It took several decades for scientists to start regularly commissioning artwork of new fossil animals, allowing Hawkinsian dinosaurs to linger in paleoartworks until the late 19th century, as in the lower right images. Novel reconstructions of upright dinosaurs were produced as early as the 1860s (top images), but were rare until palaeoart got its mojo back in the 1890s. Was the scientific backlash against the Crystal Palace Dinosaurs responsible for this dearth of new artworks? There is certainly circumstantial evidence supporting this view.

All this leads to our final chapter, the inevitably stern-faced discussion of the site’s ongoing conservation and maintenance issues. It would have been nice to end the book on a more positive note but it would have been misleading to portray anything other than the truth: that our collective efforts to keep the Geological Court in good condition have not been exemplar and, unless this changes, the long-term outlook for the site isn’t great. We review the patchy conservation history of the site and highlight that no consistent approach to maintenance has ever been followed: repair work has really been a series of occasional interventions, not a routine, regular event. Even more amazingly, outright destruction of some components were justified in the mid-20th century to make way for other Park developments. We can’t be sure, but we think these events were likely responsible for the removal or destruction of the missing palaeontological sculptures. These issues have persisted to modern times and it's a sad fact that the current appearance of the site we're attempting to celebrate is rather sorry. We often had to source photos from the last decade to illustrate the displays in a more intact, less overgrown condition.

A shot from my last visit to the Geological Court in July 2021, showing the extent of overgrowth and degradation among some of the marine reptiles. To give a sense of the scale of the vegetation in this photo, that middle ichthyosaur is one of the largest models at the site: the c. 12 m long Temnodontosaurus. The broken jaw of Ichthyosaurus communis, which you can see in the background, was a recent incident which has now been fixed. Needless to say, allowing the displays to get to this state is pretty criminal, and without a significant, long-term change to maintenance and conservation approaches, we risk losing the site forever.

Thankfully, the Crystal Palace Dinosaurs are now protected against further wanton development by having attained Grade 1 listed status. This recognises the Geological Court as having exceptional historic interest and brings a level of care and protection from Historic England, the public body that manages places of national importance to English heritage. Much is hoped from this relatively recent development and projects to save the site are underway, but we shouldn’t pretend there isn’t a lot of work to do. Behind the visibly crumbling displays are problems as fundamental as subsidence and complex internal damage caused by degradation of their metal frameworks. In addition to dramatic interventions to solve these problems, a regular management strategy to keep on top of perpetual conservation risks is also critical. Without interventions to halt plant growth on the displays and deter human trespassers, the Dinosaurs and Geological Illustrations will quickly fall back into disrepair. Ensuring that the Geological Court endures for another 170 years will not be easy or cheap, and requires a broad shift in how we value the site as a nation. Today, we’re perhaps at a critical point for deciding its future. If we don’t invest our energy and money now, we may be among the last generations to witness something approximating its original grandeur.

TL,DR: buy our book; learn cool things; save some dinosaurs.

And that, in a several thousand-word nutshell, is our book. But this post is really just a teaser of what we have to say: there is so much more to discuss around the Crystal Palace Dinosaurs that we struggled to get everything into this one tome. But for all this, there’s still plenty that we couldn’t write about, because there are enduring mysteries that we were unable to crack. What, for example, are the mysterious Wisbech Museum models of the Crystal Palace species? Do we really not have a single record for what happened to all those palaeontological sculptures, not even in some council development office somewhere? Why were so many models repaired with unsuitable replacement parts at some point in the 20th century? Will anyone, ever, find some of the original designs for the Geological Illustrations or extinct animal restorations? These, and other questions, are for future researchers to look into. For now, we’re happy to have moved the conversation along as far as we have, and to once again be shining the light on the conservation plight of a site unique in its significance to the history of science. We’re especially happy because all this will simultaneously help fund the Friends of Crystal Palace Dinosaurs and their work monitoring and maintaining the Geological Court. Check out The Art and Science of the Crystal Palace Dinosaurs if you want to appreciate the full awesomeness of this very special place.

And finally…

As a quick closing comment, I want to extend a quick personal thanks to a group of people who made this book possible: the folks who support my work at Patreon. Researching, writing and illustrating a book is a huge amount of work and the only way I could commit so much time to a charity project like this was through their monthly donations. So sincere thanks to everyone who supports me there: any positive impact this book has is, in part, related to your continued donations.


  • Becker, H. (1911). Alte und neue Rekonstruktionen ausgestorbener Tiere. Die Umschau.
  • Bramwell, V., & Peck, R. M. (2008). All in the bones: a biography of Benjamin Waterhouse Hawkins. Academy of Natural Sciences.
  • Dawson, G. (2016). Show me the bone: reconstructing prehistoric monsters in nineteenth-century Britain and America. University of Chicago Press.
  • Doyle, P. (2008). A vision of ‘deep time’: the ‘Geological Illustrations’ of Crystal Palace Park, London. In: Burek, C. V. & Prosser, C. D. (eds). The History of Geoconservation. Geological Society Special Publications, 300(1), 197-205.
  • Doyle, P., & Robinson, E. (1993). The Victorian ‘Geological Illustrations’ of Crystal Palace Park. Proceedings of the Geologists' Association, 104(3), 181-194.
  • Doyle, P., & Robinson, E. (1995). Report of a field meeting to Crystal Palace Park and West Norwood Cemetery, 11 December, 1993. Proceedings of the Geologists' Association, 106(1), 71-78.
  • Hawkins, B. W. (1854). On visual education as applied to geology, illustrated by diagrams and models of the geological restorations at the Crystal Palace. Journal of the Society of Arts (78): 443-449.
  • Hutchinson, N. H. (1893). Creatures of other days. Chapman & Hall
  • [Martineau, H.]. (1854). The Crystal Palace. Westminster Review, 62, 534-50.
  • McCarthy, S., & Gilbert, M. (1994). The Crystal Palace Dinosaurs: The story of the world's first prehistoric sculptures. Crystal Palace Foundation.
  • Nieuwland, I. (2019). American Dinosaur Abroad: A Cultural History of Carnegie's Plaster Diplodocus. University of Pittsburgh Press.
  • Owen, R. (1894). The Life of Richard Owen. J. Murray.
  • Rudwick, M. J. (1992). Scenes from deep time: early pictorial representations of the prehistoric world. University of Chicago Press.
  • Secord, J. A. (2004). Monsters at the crystal palace. In: de Chadarevian, S, & Hopwood, N. (eds). Models: the third dimension of science. Stanford University Press. 138-69 pp.