Azhdarchids: also available in flying. Depicted animal here is based on Quetzalcoatlus sp., but no taxon in particular. |
*Guarantee not guaranteed.
In a surprise move, my contribution to TetZooCon features pterosaurs. Specifically, I’m looking at the way one group of pterosaurs has made major ripples in the palaeontology pond in recent years - and not just scientifically. The changing face of pterosaur science is certainly interesting, but an equally intriguing, rarely told story exists on the popular face of flying reptile research. To whet your appetite, here’s an 'extended abstract' of my TetZooCon talk, giving some insight into what I'll be covering in a couple of weeks.
PteroPop
Pterosaurs are not unfamiliar characters in popular culture. They have been mainstays of science fiction literature since at least 1874 (Jules Verne’s Journey to the Centre of the Earth), made the jump to the silver screen in 1925 (The Lost World), and since starred in uncountable stories of time-travel, lost worlds and Jurassic Park-inspired de-extinction fiction. Neither are they strangers to public education, from being part of Benjamin Waterhouse Hawkins’ 1854 Crystal Palace menagerie to modern appearances in £multi-million documentaries. These historic popular pterosaurs rarely showed much adherence to flying reptile science: their appearances, behaviours and lifestyles mostly reflect a shorebird-like 'pterosaur archetype' rather than the specific anatomy and habits of a once-living taxon.Azhdarchidae.
In some respects, the recent surge of azhdarchid pop-culture uptake is a bit strange. It is not, for instance, that azhdarchids are a newly discovered group. Far from it, their fossils were found by at least the latest 1930s or early 1940s; good remains were apparent the 1970s, and the concept of Azhdarchidae was formalised in the early 1980s. They’re not new to popular culture either, having hung around its periphery since the 1970s to be wheeled out as 'Largest Flying Animals Ever' on occasion. These early popular azhdarchids showed little uniformity in their reconstruction - maybe even less than other pterosaurs at that time. Most bore little resemblance to actual azhdarchid fossils, either anatomically of functionally (above). They were depicted with huge variation from the 1970s-1990s: hugely elongate and narrow wings, or broad, kite-like wings? Longirostrine skulls with snub-noses or tiny pin-heads? Toothed or toothless jaws? Short necks, long necks with swan-like flexibility, or long necks stiffer than broom handles? Art produced in the 1980s - 2D work by Greg Paul, Paul MacCready’s 1985 glider (below), and a (largely sculpted) azhdarchid skeleton mounted by the Texas Memorial Museum - were probably the first works to strike close to reality, but they’re still a bit short of the mark. John Sibbick’s better known and more influential 1991 snub-nosed Quetzalcoatlus was a step back from these more accurate works, accidentally making a chimeric azhdarchid from at least two Javelina Formation azhdarchids (this ‘snub nose’ almost certainly belongs to an unnamed, short-skulled azhdarchid from the same horizon as Quetzalcoatlus).
products of imagination. Not aiding the murky early phase of azhdarchid palaeoart was the transforming nature of pterosaur science which, in the 1980s and 90s, saw much of what we thought we knew about these animals turned on its head. Thus, artists who wanted answers to simple questions like standing postures, wing membrane attachment and so forth weren't always presented with straight answers. 1997 saw a potential change for the better when Unwin and Lü (1997) reclassified the Chinese Maastrichtian ‘nyctosaurid’ Zhejiangopterus linhaiensis as an azhdarchid, but few paid attention to this obscure species when reconstructing 90s azhdarchids, and artwork continued to remain of variable accuracy. The azhdarchid fossil record has not improved fantastically since 1997, only expanding via isolated, scrappy bits and pieces. Their sudden popularity and uniformity of reconstruction has nothing to do with a significantly improved azhdarchid fossil record, then.
Azhdarchids: over 40 Megafonzies of cool!
So, if azhdarchids aren’t new, and they’ve not sent a burst of insightful fossil material our way, why are they now so popular? Perhaps recent reappraisals of their appearance and behaviour have more influence here than anything else. Reconsideration of azhdarchid mass estimates (e.g. Paul 2002; Witton 2008; Henderson 2010; Sato et al. 2010), re-interpretations of lifestyles (Hwang et al. 2002; Witton and Naish 2008, 2013; Carroll et al. 2013) and flight characteristics (Habib 2008, 2013; Witton and Habib 2010) have recast azhdarchids from billboards of flighted animal size to muscular, terrestrially-competent predators and powerful fliers, which just also happened to be giants. This has seen azhdarchids landing ‘major roles’ in palaeo pop media. In the last five years, erect-limbed, terrestrially stalking and quad-launching azhdarchids featuring in the BBC documentary Planet Dinosaur, Atlantic Productions’ Flying Monsters 3D, the 20th Century Fox film Walking with Dinosaurs 3D, the 20,000AD comic series Flesh and recent comics of Teenage Mutant Ninja Turtles, been made into at least two figurines by CollectA, in the upcoming, Steam-released multiplayer game The Stomping Land, in Nathan Carroll's wearable pedagogic puppet form and even a rap. This uptake of the same pterosaur lineage is all the more surprising when you consider the diversity of influences and goals of these projects, as well as the near-infinite sea of fossil species which could take their place. More remarkably, these depictions of azhdarchids aren’t anatomically bad or variable, either: they have large, pointy heads with posteriorly placed crests, long necks, short wing fingers and long limbs. It seems azhdarchids have genuinely penetrated the pop-palaeo zeitgeist.The times, they are becoming very different
I think there's several points of interest here. Firstly, we seem to be witnessing a relative rarity within palaeo pop culture: the indoctrination of a new lineage into the mainstream palaeontological canon. What takes a fossil species from an occasional extra and bit-part player to relative superstardom in the space of a few years? There must be aspects of ‘new’ azhdarchids which have made them more marketable and appealing in short time. And before anyone mentions it, I can vouch for azhdarchid uptake not being overtly pushed by the scientists involved in reinventing them. I've acted as a consultant for three of the projects listed above because ‘new’ azhdarchids were sought after by the media producers, and not as a generic pterosaur expert who pushed his own ideas. The other media, as far as I'm aware, just moved forward with these ideas on their own.
There is doubtless a myriad of factors making azhdarchids popular - good publicity, a sudden glut of TV and movie interest in prehistoric animals etc. - but I suspect the most important factor is that science accidentally gave azhdarchids a more appealing ‘character’. When we restore fossil animals in art and science we cannot help but impose certain ‘character traits’ into them, and, as with fictitious characters, those with traits we consider desirable are more likely to be popular. 'New' azhdarchids embody everything which is classically cool: they’re original; imagined as assertive, confident animals of great skill and energy; visually interesting and striking; instantly recognisable, as well as being gigantic: metaphorically and physically bigger than us and our problems. Plus, they have that edge of danger: big, predatory species which harvest smaller ones for their own use - let's face it, bad guys and anti-heroes are always cooler than the good guys. In short, it’s not surprising that ‘new’ azhdarchids are popular because they embody the same characteristics as most iconic literary monsters. The traits outlined above could easily apply to H. G. Wells’ Martian tripods (below) or the Star Wars mechanical walkers. Prior to their reinvention, azhdarchids didn’t - and couldn’t - have this appeal, as their appearance was ill-defined, their lifestyles too poorly constrained (skim-feeding? sediment probing? aerial hawking? aquatic pursuit predation? wading?), and much of our science pointed to rather ineffective, flimsy animals. This not only prevented crystallisation of a consistent palaeo pop ‘character’, but also didn't give them much popular appeal.
Of course, no-one can predict how long our current interest in azhdarchids will last, nor what will happen to hypotheses concerning terrestrial stalking, quad-launch and so on. My gut feeling is that these ideas will stand up to scrutiny, but we can never predict what the fossil record or new studies will tell us. Whatever happens, these ideas and the animals they concern have gone some way to superseding generic ‘pterodactyls’ in palaeontological culture, replacing them with a more accurate and detailed appreciation of pterosaur diversity. But what next for azhdarchids? What advances in azhdarchid science are on the horizon? How might these impact their portrayal in popular culture? For that, you’ll have to attend TetZooCon and my talk. Tickets!
References
- Carroll, N. R., Poust, A. W. & Varricchio, D. J. (2013). A third azhdarchid pterosaur from the Two Medicine Formation (Campanian) of Montana. In: Sayão, J. M., Costa, F. R., Bantim, R. A. M. And Kellner, A. W. A. International Symposium on Pterosaurs, Rio Ptero 2013, Short Communications. Universidad Federal do Rio de Janeiro: pp 40-42.
- Habib, M. B. (2008). Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana, 159-166.
- Habib, M. (2013). Constraining the air giants: limits on size in flying animals as an example of constraint-based biomechanical theories of form. Biological Theory, 8(3), 245-252.
- Henderson, D. M. (2010). Pterosaur body mass estimates from three-dimensional mathematical slicing. Journal of Vertebrate Paleontology, 30(3), 768-785.
- Hwang, K. G., Huh, M., Lockley, M. G., Unwin, D. M., & Wright, J. L. (2002). New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea. Geological Magazine, 139(04), 421-435.
- MacCready Jr, P. B. (1985). The great pterodactyl project. Engineering and Science, 49(2), 18-24.
- Paul, G. S. (2002). Dinosaurs of the air: the evolution and loss of flight in dinosaurs and birds. JHU Press.
- Sato, K., Sakamoto, K. Q., Watanuki, Y., Takahashi, A., Katsumata, N., Bost, C. A., & Weimerskirch, H. (2009). Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. PloS one, 4(4), e5400.
- Unwin, D. M., & Lü, J. C. (1997). On Zhejiangopterus and the relationships of pterodactyloid pterosaurs. Historical Biology, 12(3-4), 199-210.
- Witton, M. P. (2008). A new approach to determining pterosaur body mass and its implications for pterosaur flight. Zitteliana, 143-158.
- Witton, M. P., & Habib, M. B. (2010). On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PloS one, 5(11), e13982.
- Witton, M. P., & Naish, D. (2008). A reappraisal of azhdarchid pterosaur functional morphology and paleoecology. PLoS One, 3(5), e2271.
- Witton, M. P., & Naish, D. (2013). Azhdarchid pterosaurs: water-trawling pelican mimics or "terrestrial stalkers"?. Acta Palaeontologica Polonica doi: http://dx. doi. org/10.4202/app, 5.